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Abstract. Cement is used in the oil industry to line oil wells. The major components of oilwell cement are trical-
cium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A) and calcium sulphate (CaSO4). With the
exception of C2S, each of these plays an important role in the initial thickening of cement slurry. It is impor-
tant to control the time that it takes for a slurry to thicken, and this is achieved by the addition of chemical
retarders, which delay the onset of thickening. In this paper, the action of a retarder whose effects are firstly,
to form a complex with calcium ions, and secondly, to inhibit the growth of ettringite crystals is investigated.
Ettringite is a product of the hydration of C3A and the subsequent reaction of the products with calcium sul-
phate. A modified version of a model for the hydration of C3S previously investigated by Salhan, Billingham and
King (J. Engng. Math. 45 (2003) 367), along with the chemical-kinetic scheme for the action of a retarder on et-
tringite proposed by Billingham and Coveney (J. Chem. Soc. Faraday Trans. 89 (1993) 3021) is used. The model
distinguishes between liquid and solid phases, and treats water, which is significantly depleted by the formation
of ettringite, as one of the chemical constituents. It is found that both of the chemical actions of the retarder
contribute to slowing the initial reaction rate, and that the sudden crystallisation of ettringite as the effect of the
retarder is overcome, investigated by Billingham and Coveney, occurs in successive layers around the surface of
the cement grain.
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1. Introduction

Oilwell cement is used to secure a cylindrical metal pipe in a newly drilled well, and thereby
isolate the well from the surrounding formation. Accurate control of the thickening time, that
is the time after initial mixing when the cement can no longer be pumped, is crucial in this
process. If the thickening time is too short, the cement fails to reach its required placement,
whilst too long a thickening time leads to costly delays, [1, Chapter 2]. It is usual to control
the thickening time using chemical additives, known as retarders, typically phosphonates (see
for example, [2]). The mechanism by which phosphonates and other chemicals act as retard-
ers is not well understood, but it is known that retarders bind to calcium ions, [3, Chapter
11], and are able to inhibit the growth of ettringite crystals, [4,5].

In an earlier paper, [6], we argued that the early stages of cement hydration are dominated
by the hydration of the main constituent of oilwell cement, tricalcium silicate (C3S), to form
a calcium silicate hydrate gel (CSH) and calcium hydroxide (CH). Note that we are using
the usual cement nomenclature where C represents calcium oxide, CaO, S represents silicate,

†Professor King died on 14 January 2005.
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SiO2, and H represents water, H2O. We developed a model that agrees well with experimental
results, in terms of the rate at which calcium ions are produced. We have also considered and
quantified the effect on pure C3S of a retarder that binds to calcium ions, [7]. The hydration
of dicalcium silicate (C2S), the other main component of oilwell cement, is very slow relative
to that of C3S, and we have not included it in our model.

In this paper, we will marry the model that we have developed for the hydration of pure
C3S in the presence of a retarder to our model for the inhibition of the growth of ettringite
crystals, [4]. In addition, we will include the effect of the presence of calcium sulphate in the
cement slurry. In the absence of calcium sulphate, once C3A dissolves it undergoes a rapid
‘flash set’: a rapid reaction of the C3S phase with water that sets hard so that the slurry can-
not be pumped downhole. Calcium sulphate is added in order to provide sulphate ions in
solution. These react preferentially with the dissolved aluminate ions, preventing a flash set
and producing ettringite. Ettringite can exist either as an amorphous gel or as a crystal. The
transition from the gel form, which presents a barrier to diffusion, to the crystalline form,
which does not, is a key element of our model. Note that we are only considering the early
stages of the retarded hydration process, as different reactions start to become important at
later times.

Our principal aim in this paper is to show that, when incorporated into a model that
includes the main, early-time chemical reactions and diffusive mass transport, the two effects
of the retarder, namely complexing with calcium ions and poisoning of ettringite, can be
incorporated into a rational model, and have a significant effect on the overall progress of
hydration. We also want to investigate how these retarded reactions proceed, and whether
the insights gained in [6] and [4] remain relevant in this more complex setting. This work
should be viewed in the context of a variety of different models for cement hydration pro-
posed by other authors, each of which is designed to address different aspects of the process.
These models include early work on the hydration of C3S, for example [8], more sophisticated
studies of the development of microstructure in cement, for example [9] and [10], and recent
attempts to build a comprehensive cement hydration simulator [11].

2. The mathematical model

We consider the dissolution of a spherical grain of cement. We assume that this grain con-
sists of a homogeneous mixture of C3S and C3A, with a proportion δ of C3A, and lies in
the region 0≤ r ≤ r1(t) in spherical polar coordinates. Chemical reaction occurs in the region
r1(t) < r < r2(t), and dissolution of the cement grain occurs at the surface r = r1(t). At r =
r2(t), calcium and sulphate ions from the dissolution of calcium sulphate enter the reaction
region, so that the solution remains saturated with sulphate ions there. This means that we
have to solve a free-boundary problem to model the hydration process. Initially, this reaction
region is occupied by water saturated with sulphate ions and with a uniform concentration of
retarder. The subsequent evolution is assumed to be spherically symmetric, depending only
upon r and time t . Since C3S and C3A dissolve at the surface of the grain, r1(t) decreases
with time as the grain shrinks, releasing calcium, hydroxide, silicate and aluminate ions into
solution. These ions are advected by a radial fluid velocity, which is included to take into
account the effect of volume changes. They also diffuse and react chemically. The reactions
that we include, which we will describe in detail in the next section are:

1. The precipitation of CSH, CH and ettringite.
2. The crystallisation of ettringite.
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Figure 1. The positions of the two boundaries and the species involved in the reactions.

3. The action of the retarder to both inhibit the crystallisation of ettringite and bind with
calcium ions.

The coordinate system and the various phases are illustrated in Figure 1.
A major difference between the model we describe here and that which we used in our

earlier papers, [6] and [7], is that we work in terms of the mass fraction of each species,
rather than its concentration. This allows us to include water, H, as another chemical species
involved in the reaction, rather than just a background medium, relative to which the other
species diffuse. We do this because the formation of ettringite is a thirsty process, consuming
26 moles of water for every mole of C3A dissolved. In addition, we treat the solid and liquid
phases separately, as we shall see in the next section. Although, in practice, cement hydration
is a strongly exothermic reaction, we have not considered the effect of this here. Our focus is
on the interplay of the various chemical reactions.

2.1. Mixture theory

We will use a mixture theory, based on that used in the context of multiphase flow (for exam-
ple, [12]), where the solid and fluid phases are considered as interpenetrating media, and also
based on the theory used in modelling combustion processes (for example, [13]). At each
point, we define a liquid volume fraction, α(r, t), which measures the proportion of fluid there.
Within the fluid phase, there are eight different species, with mass fractions Yi(r, t), for i =
1,2, . . . ,8, and

8∑

i=1

Yi =1. (1)

The species are labelled as
1. water, H,
2. sulphate ions, SO2−

4 ,
3. aluminate ions, Al(OH)−4 ,
4. retarder, R,
5. calcium ions, Ca2+,
6. hydroxide ions, OH−,
7. silicate ions, H2SiO2−

4 ,
8. calcium/retarder complex, CaR.
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We will assume that the density of the liquid phase, ρl , is constant. As we shall see, this is
a key simplifying assumption, since it means that we do not need to solve a momentum equa-
tion. Unfortunately, this does mean that we should not expect the model to provide us with
accurate data on how the total volume of the cement slurry changes with time. However, the
fluid phase remains mainly water, and we would not expect its density to change enormously
when the concentrations of the various ions change. Moreover, although the change in den-
sity will be important whilst the slurry is flowing and once it has been placed downhole, we
are mainly concerned with the interplay between the chemical reactions.

In order to derive conservation equations for these eight species, we note that the total
mass of each species between r =a and r =b is

Mi =4π

∫ b

a

ρlα(r, t)Yi(r, t)r
2dr. (2)

This changes with time due to both the flux of species i into and out of this volume, and to
its consumption or production by chemical reaction or disassociation there. This means that

dMi

dt
=fi(a, t)4πa2 −fi(b, t)4πb2 +4π

∫ b

a

Qir
2 dr, (3)

where fi(r, t) is the mass flux per unit area of species i, and Qi its mass rate of production
due to chemical reaction or disassociation. Since each species is transported by diffusion and
advection alone, we write

fi =ρlαYiu−µα
∂Yi

∂r
, (4)

where u is the radial fluid velocity and µ the diffusivity. In a multispecies model like this, if
the diffusivities are not all taken to be equal, cross-species diffusion is needed in order to con-
serve mass. Although there is some variation in µ between the various ionic species, it is not
large (see [14, Section 5]), so we make the simplifying assumption that the diffusivities of the
ionic species are equal. After substituting (2) and (4) in (3) and integrating with respect to
time, t , this gives us

∫ b

a

ρlα(r, t)Yi(r, t)r
2dr

∣∣∣∣
t=t2

−
∫ b

a

ρlα(r, t)Yi(r, t)r
2dr

∣∣∣∣
t=t1

=
∫ t2

t1

{
ρlαYiu−µα

∂Yi

∂r

}
a2dt

∣∣∣∣
r=a

−
∫ t2

t1

{
ρlαYiu−µα

∂Yi

∂r

}
b2dt

∣∣∣∣
r=b

+
∫ t2

t1

∫ b

a

Qir
2drdt.

(5)

It is straightforward to convert this integral conservation law into an advection-reaction-diffusion
partial differential equation by writing a = r, b = r + δr, t1 = t and t2 = t + δt , and taking the
limits δr →0 and δt →0. This gives us

ρl

{
∂

∂t
(αYi)+ 1

r2

∂

∂r

(
r2αYiu

)}
= 1

r2

∂

∂r

(
r2µα

∂Yi

∂r

)
+Qi, (6)

but (5) is actually the most convenient form to use when constructing a numerical solution
scheme using the finite-volume method (see, for example, [15 Chapter 1]).

In the solid phase, which has volume fraction 1 −α(r, t), there are five species with mass
fractions Ȳj for j =1,2,3,4,5, and

5∑

j=1

Ȳj =1. (7)
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The species are labelled as
1. ettringite gel,
2. crystalline ettringite,
3. ettringite.R = poisoned ettringite,
4. CSH gel,
5. calcium hydroxide, CH.
In our simulations we have modelled the diffusivity of the ions as

µ=µ1 + (µ0 −µ1) exp
{−kd(1−α)Ȳ1

}
, (8)

where µ0 �µ1 and kd are constants. In this way, the diffusivity decreases from µ0 to µ1 as
the total amount of ettringite gel, (1−α)Ȳ1, at each point increases.

As for the liquid phase, we assume that the density of the solid phase, ρs , is constant.
There is no advection or diffusion of these solid species, so, by analogy with (5) and (6), we
have

∫ b

a

ρs (1−α(r, t)) Ȳj (r, t)r
2dr

∣∣∣∣
t=t2

−
∫ b

a

ρs (1−α(r, t)) Ȳj (r, t)r
2dr

∣∣∣∣
t=t1

=
∫ t2

t1

∫ b

a

Q̄j r
2drdt, (9)

or equivalently,

ρs

∂

∂t

{
(1−α) Ȳj

}= Q̄j . (10)

We can obtain an equation that describes the rate of expansion of the mixture by adding
(10) for j =1 to 5, and using (7), which gives us

∂α

∂t
=−Qs

ρs

, (11)

where

Qs =
i=5∑

j=1

Q̄j (12)

is the rate at which liquid mass is converted to solid mass. Similarly, if we add (6) for i = 1
to 8 and use (1) and (12), we find that

1
r2

∂

∂r

(
r2αu

)
=
(

1
ρs

− 1
ρl

)
Qs, (13)

which determines how the radial velocity, u, changes as liquid mass is converted to solid mass.
Note that we must have

Qs =
8∑

i=1

Qi, (14)

since the rate at which liquid mass is consumed is equal to the rate at which solid mass is
created. We can verify that (12) and (14) are consistent once we have postulated reaction rate
laws for the individual reaction steps.
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2.2. Chemical kinetics

In the bulk, seven chemical reactions take place. In the following rate laws, ki for i =
1,2, . . . ,7 are reaction rate constants. We use a variety of different types of reaction-rate laws,
depending upon the type of reaction step that we are trying to model. As we shall see later,
by choosing the rate constants appropriately, we can generate solutions that are in qualitative
agreement with experimental observations. Note that we shall assume that these reactions are
not reversible to keep the model as simple as possible, consistent with wanting to investigate
the interaction of the various important chemical processes.

1. H2SiO2−
4 + 3

2 Ca2+ +OH− +H2O→CSH, rate q1 =k1Y1 (Y5Y6Y7)
2/3 α3. Note that, in con-

trast to our earlier models, we have used a reaction-rate law with a power-law dependence
on the mass fractions. This is simpler to implement on the type of moving grid that we
will use later in our numerical solution. It is not reasonable to use the law of mass action
for such complex, multispecies reactions.

2. 2Al(OH)−4 + 6Ca2+ + 4OH− + 3SO2−
4 + 26H2O → (1− ε) ettg + ε ettc, rate q2 =

k2Y1 (Y2Y3Y5Y6)
1/2 α3. Note that we choose the power-law dependences of q1 and q2

to be quadratic in the ionic species and linear in Y1, the mass fraction of water. We
chose this quadratic dependence so that the reaction rate was of the same overall order
in terms of the ions as the ettringite reaction steps that we describe below. In addition,
ettringite is produced mainly as gel, ettg, but with a small constant proportion, ε �1, of
crystalline ettringite, ettc.

3. ettg + ettc → 2ettc, rate q3 = k3(1 − α)2Ȳ1Ȳ2. This is the autocatalytic step that produces
more crystalline ettringite from the small fraction seeded by the previous reaction. The
use of the law of mass action for this step is discussed in [4].

4. ettc +R→ettp, rate q4 =k4α(1−α)Ȳ2Y4. This is the step through which the retarder inhib-
its the production of crystalline ettringite by binding with it to produce a poisoned form,
ettp. In [4] it was shown that a quadratic autocatalytic model for the ettringite gel to crys-
talline transition along with a quadratic inhibition step leads to clock reaction-like behav-
iour, with a long induction phase followed by a rapid transition phase. We use the law of
mass action for each of the two- and three-component steps 4, 5 and 7.

5. Ca+R→CaR, rate q5 =k5α
2Y4Y5. The retarder forms a complex, CaR, with calcium ions

in this step. We assume that this complex cannot inhibit the growth of crystalline ettring-
ite.

6. Ca2+ + 2OH− → CH, rate q6 = k6α
3
(
Y5Y

2
6 −Y 3

56sat

)H (
Y5Y

2
6 −Y 3

56sat

)
. Calcium hydroxide,

CH, is formed through a precipitation reaction once the solubility product, Y5Y
2
6 , exceeds

the saturated value, Y 3
56sat. Note that H is the Heaviside step function.

7. Ca2+ + 2OH− + CH → 2CH, rate q7 = k7α
2 (1−α)Y5Y6Ȳ5. This is an autocatalytic step,

which will dominate the production of CH once CH itself is formed in the previous step.

From these rate laws we can deduce Qi and Q̄j . In particular, the rate at which liquid mass
is converted to solid mass is

Qs = m̄4q1 +{(1− ε) m̄1 + εm̄2}q2 +m4q4 + m̄5 (q6 +q7) , (15)

where mi are the molar masses of the ionic species, and m̄j the molar masses of the solid
species. As we would expect, the conversion of ions to ettringite and CSH gels and to cal-
cium hydroxide, along with the incorporation of the retarder into the structure of poisoned
ettringite, are the only processes that contribute to Qs . To summarize, we have used the law
of mass action for the ionic reaction rates, in line with the work discussed in [4], [16] and [7],
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power-law reaction rates compatible with these and solubility product type reaction rates for
the precipitation reactions, as discussed in [6].

At the boundary r = r1(t), we assume that the dissolution of both C3S and C3A,

C3S+3H2O→3Ca2+ +4OH− +H2SiO2−
4 , (16)

C3A+6H2O→3Ca2+ +4OH− +2Al(OH)−4 , (17)

proceeds at the same rate, q0 =k0αY1 exp
{−K0 (Y3 +Y7) Y5Y6/Y 3

sat
}
, evaluated at r = r1(t), with

k0 and K0 constants. This means that the rate of dissolution decreases as {(Y3 +Y7) Y5Y6}1/3

approaches Ysat and the solution becomes saturated. Note that this is an effect that we had
to build into our earlier model, [6], in a somewhat artificial manner. Of course, within the
context of our model of the cement grain as a continuous sphere of uniform composition, it
is not possible to allow the two constituents to dissolve at unequal rates, so this should be
treated as a simplifying assumption.

The boundary, r = r1(t), of the grain shrinks as this dissolution occurs, with

dr1

dt
=V1 =−δM1 + (1− δ)M2

ρc

q0, (18)

where ρc is the density of the grain, δ is the proportion of C3A in the grain and

M1 =3m5 +4m6 +2m3 −6m1, M2 =3m5 +4m6 +m7 −3m1

are the molar masses of C3A and C3S. The boundary conditions at r = r1(t) are that there is no flux
of retarder, sulphate ions or retarder/calcium complex, and that the fluxes of calcium, hydroxide,
silicate and aluminate ions, and water, are consistent with (16) and (17). This means that

µα
∂Y1

∂r
=ρlα (u−V1) Y1 +3 (1+ δ)m1q0, µα

∂Y2

∂r
=ρlα (u−V1) Y2,

µα
∂Y3

∂r
=ρlα (u−V1) Y3 −2δm3q0, µα

∂Y4

∂r
=ρlα (u−V1) Y4,

(19)
µα

∂Y5

∂r
=ρlα (u−V1) Y5 −3m5q0, µα

∂Y6

∂r
=ρlα (u−V1) Y6 −4m6q0,

µα
∂Y7

∂r
=ρlα (u−V1) Y7 − (1− δ)m7q0, µα

∂Y8

∂r
=ρlα (u−V1) Y8

at r = r1(t). If we add these boundary conditions and make use of (1), (7) and (18), we find
that

u(r1, t)=
(

1
ρlα(r1, t)

− 1
ρc

)
{δM1 + (1− δ)M2}q0. (20)

In order to determine the boundary conditions at r = r2(t), we note that calcium sulphate
dissolves through the reaction

CaSO4 →Ca2+ +SO2−
4 .

Although this reaction is reversible, and could lead to the precipitation of gypsum, we have
excluded this possibility, since gypsum is added specifically to provide sulphate ions and pre-
vent flash set, as discussed earlier. We assume that there is a flux of calcium and sulphate ions
through r = r2(t) in equal proportions, such that the mass fraction of sulphate ions, Y2(r2, t),
remains at its saturated value, Y2sat. We therefore require that

dr2

dt
=V2, (21)
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Y2 =Y2sat, (22)

and

µα
∂Y1

∂r
=ρlα (u−V2) Y1, µα

∂Y2

∂r
=ρlα (u−V2) Y2 +m2qG,

µα
∂Y3

∂r
=ρlα (u−V2) Y3, µα

∂Y4

∂r
=ρlα (u−V2) Y4,

µα
∂Y5

∂r
=ρlα (u−V2) Y5 +m5qG, µα

∂Y6

∂r
=ρlα (u−V2) Y6,

µα
∂Y7

∂r
=ρlα (u−V2) Y7, µα

∂Y8

∂r
=ρlα (u−V2) Y8

at r = r2(t), where V2 is the velocity of the outer boundary and qG is the flux of ions due to
the dissolution of calcium sulphate, both of which are to be determined. The most useful way
of writing these is to eliminate qG to give

µα
∂Y1

∂r
=ρlα (u−V2) Y1, µα

∂Y3

∂r
=ρlα (u−V2) Y3,

µα
∂

∂r
(m2Y5 −m5Y2)=ρlα (u−V2) (m2Y5 −m5Y2) , (23)

µα
∂Y4

∂r
=ρlα (u−V2) Y4, µα

∂Y6

∂r
=ρlα (u−V2) Y6,

µα
∂Y7

∂r
=ρlα (u−V2) Y7, µα

∂Y8

∂r
=ρlα (u−V2) Y8

at r = r2. There are 10 unknowns at r = r2, namely r2, V2 and Yi for i = 1,2, . . . ,8, and 10
equations, seven in (23), along with (1), (21) and (22).

Finally, we note that appropriate initial conditions are that

r1 = r10, r2 = r20, Y3 =Y5 =Y6 =Y7 =Y8 =0,

Y2 =Y2sat , Y4 =Y40, Y1 =1−Y2sat −Y40, α =1, (24)

when t = 0. Note that we do not need to specify Ȳj , since α = 1 (everything is in the liquid
phase initially).

The mass fractions and the liquid volume fraction are already dimensionless, so there is
not much work to do to make our system of equations dimensionless. We use the initial
radius of the grain, r10 as our lengthscale, and make a timescale using the rate of dissolution
of the grain and the molar mass and density of ettringite, m̄1k0/ρs . This leads to a velocity
scale ρsr10/m̄1k0 and a diffusion scale m̄1k0r

2
10. The dimensionless constants that remain in

the system are then ratios of reaction rate constants, molar masses and diffusion rates. This
is equivalent to setting r10 =1, k0 =1, µ0 =1 and m̄1 = m̄2 =1.

3. Numerical solution method

The simplest numerical solution method would be to discretize the region r1(t) ≤ r ≤ r2(t)

with a uniform grid of N + 1 points, r = r(I) = r1 + (I − 1)�r for I = 1,2, . . .N + 1, with
�r = (r2 − r1)/N . However, we need to take into account the motion of the inner and outer
boundaries, r = r1(t) and r = r2(t). We therefore allow the first and last grid points, r(1) and
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r(N+1), to move with the solid and fluid, respectively, whilst keeping the other grid points
fixed. Whenever either of these boundary points moves far enough that it is more than 1·01�r

away from its nearest neighbour, we regrid onto a new uniform grid, with a new value of �r,
and linearly interpolate all of the dependent variables onto the new grid.

We use a finite-volume method, with the liquid-volume fraction, α, and the species mass
fractions, Yi and Ȳj , calculated at the midpoints of each cell. In fact, as we can see from the
form of the Equations (9) and the forms of the reaction rates, it is more convenient to work
with Zj = (1−α) Ȳj , which are zero initially. In addition, it is more sensible to discretize the
radial fluid velocity, u, at the boundaries of the cell, so that u=uI at r = r(I).

We will now sketch the solution method that we have used. The method is explicit in time
and, for (13), explicit in space. At each time step we move the grid points at r1 and r2 using
r1,2(t +�t)= r1,2(t)+�tV1,2, where �t is the time step, and solve on cells bounded by these
two points and the original cell boundaries. At each time step, we calculate the reaction rates
and diffusion coefficient using the known species fractions.

The method is based on discretizing the integral conservation laws (5) and (9). For exam-
ple, on the part of the domain with cells of equal length, (5) gives

ρl

(
αt+�t

I Y t+�t
I −αt

I Y
t
I

)
r2
I+ 1

2

�t
=

r2
I f t

I− 1
2
− r2

I+1f
t

I+ 1
2

�r
+ r2

I Qt
I , (25)

where the subscripts refer to the cell and the superscripts to time and

f
I+ 1

2
=α

I+ 1
2

(
ρluI+1YI+ 1

2
−µ

I+ 1
2

YI+1 −YI

�r

)
, (26)

Y
I+ 1

2
= 1

2

(
YI +YI+1

)
, α

I+ 1
2
= 1

2

(
αI +αI+1

)
, r

I+ 1
2
= 1

2

(
rI + rI+1

)
. (27)

At the end cells, I = 1 and I = N + 1, whose boundaries move, we need to be a little more
careful, since the cell sizes change with time and we need to use the fluxes prescribed by (19)
and (23). For example, at r = r1, taking into account the geometry of the old and new cells,
we find that
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where �r0 = rt
(2)

− rt
(1)

and �r1 = rt+�t
(2)

− rt+�t
(1)

. The flux f1 at r = r1 is then given by the
boundary conditions at r = r1, (19), and similarly at r = r2.

We begin by solving for the liquid fraction, α, on the new set of cells, then solve for u by
discretizing (13) explicitly in space, stepping in the positive r-direction from the known value
at r = r1 given by (20). We then solve for Yi and Zj . In this way, we can ensure that we con-
serve mass to machine accuracy.

Determining the new values at r = r2 is more troublesome, since we do not have an explicit
expression for V2. We use an iterative method, taking an initial guess of V2, solving at r =
r2(t + �t), and determining the value of Y2 there. We then modify V2 until Y2 = Y2sat using
the secant method. The final step is to check whether either of the end points has moved far
enough that we need to define a new, uniform grid on r1(t + �t) ≤ r ≤ r2(t + �t). If so, we
linearly interpolate the variables onto this new grid. Although this does not conserve mass to
machine accuracy, the loss of mass is small, as we shall see later. Finally, note that we choose
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an appropriate time step at each stage by considering the usual stability constraint on this
explicit discretization, and also from the size of the reaction rate terms. In addition, if any of
the quantities changes by more than a small threshold value at any time step, we repeat with
the time step halved.

4. Numerical results

We have yet to compare our model quantitatively with experimental data; indeed, this is a
very difficult task given the complexity of the system and the difficulties of measuring the
quantities that we model, so the following results are simply intended to give some idea of
the type of behaviour that the model predicts. The results are qualitatively in agreement with
what is observed experimentally, [3, Chapter 11].

Working in terms of the dimensionless variables that we defined above, we used r20 =2·5,
which corresponds to a water/cement ratio by mass of about 5 and δ = 0·25; a grain that is
25% C3A. We calculated the molar masses of the various chemicals from those of their con-
stituents, and used ε =0·001, k1 =3×104, k2 =3×103, k3 =102, k4 =104, k5 =3×103, k6 =103,
k7 =106, K0 =2, ρl/ρs =0·65, ρc/ρs =2, kd =50, µ0 =10−1, µ1 =10−2, Y2sat =0·02, Ysat =0·005
and Y56sat = 0·004. Some of these dimensionless reaction-rate constants are rather large, but
only because the mass fractions of some of the ions are rather small. We could have scaled
the various mass fractions, which would have led to smaller dimensionless reaction rates, but
there is little value in this, since we are proceeding numerically.

We will describe four simulations, with the initial mass fraction of retarder being suc-
cessively Y40 = 0, 0·025, 0·05 and 0·075. The simulations discussed below used 200 cells and
proceeded until t = 1000. However, we also ran some shorter simulations with more cells to
check that the solution we obtained had converged at this level of resolution. Animations
of the evolution of the solid and liquid fractions, which give more of a feel for how the
solution develops, can be found at http://www.maths.nott.ac.uk/personal/pmzjb1/cementanima-
tions.htm. Figures 2 to 11 illustrate various aspects of the solutions.

In the absence of any retarder, most of the ettringite gel that forms is immediately trans-
formed to crystalline ettringite, as shown in Figure 2, and the solid fraction rapidly increases,
as shown in Figure 3. The calcium and hydroxide ion concentrations build up in solution, as
shown in Figures 4 and 5. When t ≈10, calcium hydroxide starts to precipitate at the surface
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of the grain, and the concentrations of hydroxide and calcium ions start to decrease, whilst
silicate and aluminate ions build up in solution. When t ≈ 60, all of the hydroxide ions in
solution away from the surface of the grain have been consumed, and these only exist in the
neighbourhood of the grain. This allows the concentration of calcium ions to increase again.
As the surface of the grain recedes, the layer of solids, a mixture of CSH gel, ettringite and
CH, builds up, as shown in Figure 6. At some later time, dependent upon the interactions of
the grains when the slurry is in motion, it will no longer be possible to pump the cement. Fig-
ure 7 shows that 8% of the initial water has been consumed when t =1000. Figure 8 shows the
positions of the boundaries of the domain. When t =1000, r1 ≈0·78, which means that more
than half of the volume of the grain has been consumed in the reaction by this time. Figure 9
shows the fluid velocity, u, when t =50. The maximum close to the surface of the grain is due
to the large solid fraction there, which leads to an increased fluid velocity in order to main-
tain continuity of flux, αu. The velocity profile is qualitatively similar throughout the hydra-
tion process.

The most obvious effect of the retarder is that it forms a complex with calcium ions, so
that there is very little calcium in solution away from the surface of the grain (see Figure 4).
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This leads to significantly higher concentrations of hydroxide in solution than in the unretard-
ed case. In addition, although some of the ettringite gel is transformed to crystalline ettring-
ite, and is then poisoned by the retarder, there is a significant concentration of ettringite gel
a small distance from the surface of the grain, which is not transformed to crystalline ettring-
ite because of the action of the retarder. As time passes, at discrete intervals, successive lay-
ers of this gel are transformed to crystalline ettringite. This can be seen clearly in Figure 2,
where, although the total amounts of the various forms of ettringite appear to change dis-
continuously, these changes are in fact smooth when examined on a finer time scale. These
rapid changes arise because of the interaction between the autocatalytic production of ettring-
ite crystals from ettringite gel in the presence of the inhibitor, as described in [4] and [16].
The transformation occurs in successive layers as time progresses. This is illustrated in Fig-
ure 10, which shows the distribution of the solid phases when t = 1000. There is a layer of
poisoned ettringite surrounded by a layer of ettringite gel, which has yet to be transformed to
its crystalline form. The presence of significant amounts of ettringite gel decreases the diffu-
sion coefficient, and traps a higher concentration of ions close to the surface of the grain. One
consequence of this is that the grain dissolves more slowly, as shown in Figure 8. This means
that the total amount of solid formed is larger in the unretarded case, which means that the
thickening time is shorter, as we should expect, as shown in Figure 2. Once the retarder is
consumed (see Figure 11), the reaction proceeds along the same lines as the unretarded case.
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Note also that, as shown in Figure 10, when there is sufficient retarder present that a sig-
nificant concentration of hydroxide ions persists in solution, some ettringite may form at the
outer boundary of the domain.

5. Conclusions and future work

We have been able to construct a multiphase, multicomponent model for the hydration of oil-
well cement in the presence of a retarder. Furthermore, we have shown that the two effects
of a retarder, namely complexing with calcium and poisoning of ettringite are not mutually
exclusive, and can both act to retard the hydration process. The most pressing need is to
quantitatively compare our results with experimental data, and we are currently pursuing this.
It would also be of interest to investigate the spatial structure of the gel to crystalline transi-
tion that occurs at discrete time intervals in the model. Some related work is discussed in [17].

Once we have estimated the various parameters in the model, mainly the unknown reac-
tion rate constants, we can consider extensions to the current model. Possible avenues to
explore include:

– Extension of the model to a periodic array of grains, which requires the solution of the
fully three-dimensional version of the model equations instead of the simpler, spherically
symmetric problem that we have considered so far.

– The inclusion of other chemical reactions, which may be important for cements used in
industries other than the oil industry.

– Modelling the volume change of the cement. This would require a completely different
numerical scheme, since a momentum equation along with density as a function of pres-
sure and composition would be required. This would also be the appropriate point at
which to bring the effect of temperature changes due to exothermicity into the model.
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